Optics 443:
Table of Contents for the Class Notes
 
Optics 443/Mat. Science 471:
Optical
Fabrication and
Testing

Class
Description

Class
Notes Outline

 

ChE 447

MSC 447

Opt 492

Optics and
Liquid Crystals
for Chemical
Engineers
Class
Description
Class
Notes Outline
 
HOME page
 
 
 
 
 

CHAPTER 1: INTRODUCTION TO GLASS

1.1 THE NATURE OF GLASS 1.1
  1.1.1 The Vitreous State 1.1
  1.1.2 Glass Structure 1.3
  1.1.3 Valence and Bonding 1.5
1.2 FUNCTIONAL CLASSIFICATIONS 1.6
    Formers, Intermediates and Modifiers 1.6
    Cationic Field Strength 1.7
    Electronegativity 1.8
    Fundamental Characteristics of Elements 1.9
1.3 MODIFIER CATIONS IN A SILICA GLASS 1.12
    Periodic Chart of the Elements 1.13
1.4 PHASE TRANSITION 1.14
  1.4.1 Crystallization 1.14
  1.4.2 Phase Separation 1.15

CHAPTER 2: OPTICAL GLASS

2.1 INTRODUCTION 2.1
  2.1.1 Glass Table 2.1
  2.1.2 Designation of Glass Types 2.7
  2.1.3 Important Glass Composition Series 2.9
  2.1.4 Evolution of Chemical Resistant/Shock Resistant Laboratory Ware 2.18
2.2 DETERMINATION OF OPTICAL GLASS COMPOSITIONS 2.19
  2.2.1 Refractive Index 2.19
  2.2.2 Dispersion and Absorption 2.20
  2.2.3 Internal Transmission 2.22
  2.2.4 Stabilization Against Devitrification 2.25
    Phase Diagrams 2.26
  2.2.5 Other Physical Properties 2.32a
    Thermal Expansion 2.32a
    Thermal Conductivity 2.32b
    Young's Modulus 2.32c
    Chemical Durability 2.32cc
    Chemical Durability Tests 2.32d
    Hoya Chemical Durability Diagram 2.36
    Lab Glasses from Glass Catalogs 2.38

CHAPTER 3: GLASS PRODUCTION

3.1 RAW MATERIALS 3.1
3.2 MELTING AND FORMING 3.3
  3.2.1 Scientific Glass Blowing 3.3
  3.2.2 Flat Glass Manufacture 3.9
3.3 OPTICAL GLASS: MANUFACTURING METHODS 3.11
  3.3.1 Clay Pot Melting 3.11
  3.3.2 Platinum Pot Melting 3.12
  3.3.3 Continuous Melting 3.13
3.4 MELTING METHODS 3.14
  3.4.1 Electric Current Melting 3.14
  3.4.2 Electric Melting Revisited 3.16
3.5 FORMING METHODS 3.18
  3.5.1 Casting From Melt 3.19
  3.5.2 Reheat/Direct Pressing 3.20
    High Pressure Glass Lens Molding 3.24a
  3.5.3 Replicated Plastic Overcoats 3.24b
  3.5.4 Thin Film Aspheres 3.24b
  3.5.5 Macro Axial-Gradient-Index (AGRIN) Lens Materials 3.24c
3.6 DISCUSSION OF QUALITY ISSUES 3.25
  3.6.1 Definitions 3.29
  3.6.2 Striae 3.30
  3.6.3 Stirring 3.31
  3.6.4 Bubbles 3.33
  3.6.5 Annealing 3.35

CHAPTER 4: COLD WORKING OF OPTICAL GLASSES

4.1 THE POLISHING PROCESS 4.1
  4.1.1 Mechanism of Polishing 4.1
  4.1.2 Polishing is Chemomechanical 4.4
  4.1.3 Hardness Scales, Polishing Agents, and the Lab Glass Chart 4.7
    Conversion Factors for Mechanical Properties 4.9
4.2 POLISHING AGENTS AND THEIR PROPERTIES 4.10
  4.2.1 Types - Sold as Powders or Permanent Suspensions 4.11
    Particle Sizing 4.13
    Supplies Used in the Optics 443 Lab 4.14
  4.2.2 Some Important Properties of Polishing Agents 4.15
    Concentration and Hardness 4.15
    Particle Size 4.18
  4.2.3 Norman Brown's Speculation on the Polishing Process 4.21
  4.2.4 Cook's Chemistry of Glass Polishing 4.22
  4.2.5 Cumbo's Insight - Slurry Charge Control Effect 4.26
    Kaller on Polishing 4.28
4.3   POLISHING MATERIALS (POLISHERS) 4.29
    Some Definitions 4.30
  4.3.1 Creep Compliance 4.32
  4.3.2 Viscoelastic Versus Elastic Polishers 4.34
  4.3.3 Matching Polisher to Glass 4.35
  4.3.4 Pitch Polisher Shape Changes 4.37

CHAPTER 5: FINE GRINDING

5.1 OVERVIEW OF LOOSE ABRASIVE SMOOTHING (LAPPING) 5.1
  5.1.1 Analogy to Loading with Diamond Indenter 5.2
  5.1.2 Transition: Polishing to Grinding 5.3
  5.1.3 Grinding Tools 5.3a
5.2 MECHANISM OF LOOSE ABRASIVE SMOOTHING 5.4
    Grit Size, Mesh, and Micron Size 5.4a
    Grinding Compounds 5.5
  5.2.1 Average Particle Size 5.7
    Hardness of abrasive and workpiece 5.10a
    Pocket Surf III 5.11a
  5.2.2 Empirical Results on Grinding 5.12
    Stewart Observatory Mirror Lab 5.12b
  5.3 KEY TO LOOSE ABRASIVE SMOOTHING - LAPPING HARDNESS 5.13
  5.3.1 Role of Knoop Indentation Hardness 5.13a
    Conversion Factors for Mechanical Properties Revisited 5.14a
  5.3.2 Role of Vickers Indentation Hardness 5.15
  5.3.3 Practical Strength of Glass 5.16
  5.3.4 Intrinsic Fracture Toughness 5.17
  5.3.5 Lambropoulos on Loose Abrasive Grinding 5.20
    Removal Goes as E/KcHk2 5.21
    Augmented Preston's Coefficient 5.22
  5.3.6 Chemistry in Loose Abrasive Grinding 5.23

CHAPTER 6: SUB-SURFACE DAMAGE, STRESS, AND BOUND ABRASIVE GRINDING

6.1 SUB-SURFACE DAMAGE 6.1
6.2 METHODS FOR MEASURING SSD 6.3
  6.2.1 Taper Polish 6.4
  6.2.2 Itek Ball Method/Dimpling 6.5
  6.2.3 Constancy of Chemical Etch Rate 6.8
  6.2.4 "Depth of Damage" by Fracture Mechanics 6.10
  6.2.5 Empirical Observation: SSD related to Surface Roughness 6.12
    Recipe for Minimizing SSD 6.13
    Controlled Grinding Experiment 6.14
6.3 BOUND DIAMOND ABRASIVE GRINDING 6.16
    Diamond Pellets 6.16
  6.3.1 Material Removal with Diamond 6.17
  6.3.2 Diamond Ring Tool Microgrinding 6.18
    Tool Marks 6.18a
    Opticam® Machines 6.19
    Diamond Ring Tools 6.19a
    Diamond Types and Bond Types 6.20
    Process Performance 6.20b
    Role of Coolants 6.21
    Tool Wear and p/f Ratio 6.21a
    Correlations w/Roughness, SSD, and Ductility Index 6.22
    Comparing Loose Abrasive and Deterministic Microgrinding 6.22b
  6.3.3 Truing and Dressing 6.23
  6.3.4 ELID - Electrically Controlled Dressing 6.24
  6.3.5 Contour Grinding of Aspheric Optics 6.25
  6.3.6 What are Conformal Optics? 6.26a
6.4 BRITTLE-DUCTILE TRANSITION 6.27
  6.4.1 Ductile Removal in Optics Manufacturing 6.28
  6.4.2 Critical Depth of Cut 6.29
  6.4.3 High Temperatures and Dull Diamonds in the Cutting Zone 6.30
  6.4.4 Slurry Fluid-Induced Ductile Removal 6.31
6.5 STRESS FROM GRINDING - TWYMAN EFFECT 6.32
  6.5.1 Thin Film Analogy. 6.33
  6.5.2 Work of Podzimek on Depth of Grinding Forces 6.35
    Lambropoulos on Podzimek 6.36
    Effect of Process Variables 6.37
6.6 SINGLE POINT DIAMOND TURNING 6.38

CHAPTER 7: SPECIAL TECHNIQUES AND MATERIALS

7.1 BLOCKING 7.1
7.2 SPECIAL FINISHING TECHNIQUES 7.4
  7.2.1 Bowl Feed Polishing 7.4
  7.2.2 Continuous Polishing (Flat Lapping) 7.4
    Preston's Equation 7.7
    Pitch for CP machines 7.9
    Double-Sided Processing 7.11
  7.2.3 (Nonchemical) Polishing of Metals 7.15
  7.2.4 Float Polishing 7.16
  7.2.5 Chemical-Mechanical Polishing (CMP) 7.17
  7.2.6 Subaperture Lap Processes 7.18
    CCOS - Computer Controlled Optical Surfacing 7.19
    IBF - Ion Beam Figuring 7.20
    PACE - Plasma Assisted Chemical Etching 7.25
    MRF - Magnetorheological Finishing 7.26
  7.2.7 Polishing Protocols for Crystals and Polycrystalline Materials 7.34
  7.2.8 Other Special Polishing Techniques 7.40
7.3 WORKING OF PLASTICS 7.42
  7.3.1 Characteristics of Optical Plastics 7.31
    Plastics glass chart 7.43
  7.3.2 Methods of Fabrication 7.44
  7.3.3 Optical Transmittance 7.46
  7.3.4 Thermo-optic distortion 7.49
  7.3.5 Stress-Birefringence 7.49
7.4 EPOXIES AND ADHESIVES 7.50
    Adhesive Application and Placement 7.51
    Speed of UV curing 7.52
7.5 OPTICAL CONTACTING 7.53
7.6 REFRACTIVE INDEX FLUIDS 7.57

CHAPTER 8: CLEANING

  A CLEAN SURFACE 8.1
  CONTAMINATION 8.2
  CONTAMINANT REMOVAL 8.3
  CLEAN WATER 8.8
  CLEANING PROCESSES 8.15

CHAPTER 9: SPECIFICATION AND TESTING

9.1 INTERFEROMETRY 9.1
    Coherence 9.2
    Interferometers 9.3
    Data Analysis 9.6
    Scale Factors 9.7
    Null Interferogram and Measuring Radius of Curvature 9.9
    Evaluation 9.13
    Phase Shifting Interferometry 9.16
    Lens Testing and Other Applications 9.17
    Sample Interferograms 9.18a
  9.1.1 Testing of Aspheric Optics 9.18b
9.2 MATERIAL SPECIFICATIONS 9.19
  9.19 Form of Supply 9.19
  9.2.2 Refractive Index and Dispersion 9.19
  9.2.3 Internal Homogeneity 9.20
  9.2.4 Striae 9.23
  9.2.5 Residual Stress Birefringence in Glass 9.24
  9.2.6 Bubbles 9.29
9.3 DIMENSIONAL TOLERANCING 9.30
9.4 SPECIFICATION OF FABRICATED PROPERTIES 9.33
  9.4.1 Parallelism of Two Surfaces 9.34
  9.4.2 Cosmetic Surface Quality 9.36
  9.4.3 Surface Microtopography and Scatter 9.40
    Stylus Profiler 9.42
    RMS Roughness 9.44
    Sample Roughness Scans 9.45
    White Light Optical Profiler 9.46
    Laser Based Optical Profiler 9.47a
    Spatial Filtering of Profile Data 9.47b
    Bristow on Power Spectrum to Quantify Surface Topography 9.48
    Power Spectral Density 9.52
    Total Integrated Scatter (TIS) 9.56
    Bidirectional Reflectance Distribution Function (BRDF) 9.57
  9.4.4 Total Wave Front Quality or Transmitted Wave Front Quality 9.60
  9.4.5 Specification Writing 9.61
  9.4.6 ISO 10110-Preparation of Drawings for Optical Elements and Systems 9.63
    Example, a Lens Element 9.65
    Tabular Listing of Codes and Symbols 9.66
    ISO 10110 Discourse on Surface Imperfections 9.69

CHAPTER 10: PASSIVE APPLICATIONS

10.1 OPTICAL FILTER GLASSES 10.2
  10.1.1 Overview: Colored Filter Glasses 10.4
  10.1.2 The Importance of Coordination 10.5
  10.1.3 Absorption Spectra of Two Important Rare Earth Ions 10.7
  10.1.4 Filter Glass Designations by Manufacturers 10.8
  10.1.5 Deleterious Effects 10.15
    Hydroxyl Radical 10.16
    Fluorescence 10.17
    Color Centers and Solarization 10.20
  10.1.6 Vitreous Silica 10.22a
    Gel Method for Manufacturing Fusde Silica 10.22f
10.2 INFRARED TRANSMITTING GLASSES 10.23
    Compositions and Regions of Transparency 10.23
    Glass Diagram for IR Materials 10.23a
10.3 TRANSPARENT CRYSTALLIZED GLASSES 10.25
  10.3.1 Formation Mechanism 10.27
  10.3.2 Commercial Products 10.29
  10.3.3 Low Thermal Expansion 10.30
  10.3.4 Photosensitive Glass-Ceramic 10.33
10.4 FUTURE TOPICS 10.34

CHAPTER 11: ACTIVE APPLICATIONS

11.1 SOLID STATE GLASS LASER 11.2
  11.1.1 Nd+3 Ion Lasing Transition 11.4
  11.1.2 Parameters that Permit Lasing 11.5
    OMEGA Laser 11.8
    National Ignition Facility 11.9
  11.1.3 Glass Laser Device Configuration 11.10
  11.1.4 Laser Glass Optimized for Specific Tasks 11.11
  11.1.5 Nd:Glass Slab Laser Concept 11.12
  11.1.6 Phosphate Amplifier Gains 11.14
  11.1.7 Laser Glass Characteristics 11.15
  11.1.8 Short Pulse/High Intensity Limitation 11.16
  11.1.9 Thermo-Optic Distortion 11.18
  11.1.10 Major Pumping Efficiency Improvements with Diode versus Flash Lamp Sources 11.19
  11.1.11 Platinum in Laser Glass 11.21
  11.1.12 Stress-Birefringence in Laser Rods 11.24
  11.1.13 Strengthened Glass for High Average Power Lasers 11.25
  11.1.14 Other Ions for Glass Lasers 11.39
11.2 FARADAY ISOLATORS 11.40
  11.2.1 Faraday Isolator Configuration 11.40
  11.2.2 Faraday Isolator Materials 11.41
  11.2.3 Isolator Design 11.42
  11.2.4 Magnet Design 11.43
  11.2.5 Faraday Isolator Performance 11.45
[ Home Page ] [ Team ] [ Research Publications ] [ Facilities & Instrumentation ] [ Research Summaries ] [ Courses ] [ Educational Outreach ]
COM & UofR logo
Please send your comments or suggestions to Webmaster.
This site was last updated December 7, 2009.
URL: http://www.opticsexcellence.org/SJ_TeamSite/index.html
This site is maintained by the Center for Optics Manufacturing.
Facilities Instrumentation Link Education Outreach Link Courses Link Research Summaries Link Facilities Instrumentation Link Research Publications Link Team Link